
Text
Preprocessing
and Edit
Distance

Natalie Parde
UIC CS 421

Natalie Parde - UIC CS 421 1

What is text preprocessing?
• The process of automatically organizing, normalizing, and

manipulating text so it can be handled more easily by
downstream language processing tasks.

“Have some wine,” the March Hare
said in an encouraging tone.

Alice looked all round the table, but
there was nothing on it but tea. “I don't
see any wine," she remarked.

“There isn't any,” said the March Hare.

- Lewis Carroll, Alice’s Adventures in
Wonderland

have some wine [PERSON 1] said in an
encouraging tone

[PERSON 2] looked all round the table but
there was nothing on it but tea

i don't see any wine she remarked

there isn't any said [PERSON 1]

- Lewis Carroll, Alice’s Adventures in
Wonderland

Natalie Parde - UIC CS 421 2

Text preprocessing steps can (and
should!) vary depending on your
needs.

Important

Not Important

capitalization

punctuation

proper nouns

British vs. American spellings (for English text)

written numbers vs. digits

Natalie Parde - UIC CS 421 3

This
Week’s
Topics

Natalie Parde - UIC CS 421 4

Tuesday

Regular expressions
Finite state automata

Thursday

Finite state transducers
Additional ways to
preprocess text
Edit distance

This
Week’s
Topics

Natalie Parde - UIC CS 421 5

Tuesday

Regular expressions
Finite state automata

Thursday

Finite state transducers
Additional ways to
preprocess text
Edit distance

One way to preprocess text
is by using regular
expressions.

• Regular expressions: A formal language for specifying
text strings.

• How can we search for any of these?
• Donut
• donut
• Doughnut
• doughnut
• Donuts
• doughnuts

Natalie Parde - UIC CS 421 6

Regular Expression Terminology

Natalie Parde - UIC CS 421 7

Regex: Common abbreviation for regular expression

Disjunction: Logical OR

Range: All characters in a sequence from c1-c2

Negation: Logical NOT

Scope: Indicates to which characters the regex applies

Anchor: Matches the beginning or end of a string

Disjunctions and
Ranges

• Disjunction: Letters
inside square
brackets [az]

• Range: Hyphen
between the first
and last characters
in the range [a-z]

Natalie Parde - UIC CS 421 8

Pattern Matches Example
[dD]onut donut,

Donut
This morning would
be better with a
donut.

[0123456789] Any digit This morning would
be better with 5
donuts.

[A-Z] An
uppercase
letter

Donuts are an
excellent way to
start the day.

[0-9] Any digit I just ate 5 donuts.

Negation in
Disjunction

Pattern Matches Example

[^dD]onut Any letter
except “d” or
“D” before
the
sequence
“onut”

This morning
would be better
with a coconut.

[^A-Z] Not an
uppercase
letter

Donuts are an
excellent way to
start the day.

[^^] Not a caret What is your
favorite kind of
donut?

D^o The pattern
“D^o”

Is D^onut a good
name for my donut
shop?

More about
disjunctions!

N
atalie Parde - U

IC
 C

S 421

• The pipe | indicates the union (logical
OR) of two regular expressions

• a|b|c is equivalent to [abc]

10

Pattern Matches Example

d|D “d” or “D” Good morning!

Special
Characters in

Regular
Expressions

N
atalie Parde - U

IC
 C

S 421

• *: Means that there must be 0 or more occurrences of
the preceding expression

• .: A wildcard that can mean any character
• +: Means that there must be 1 or more occurrences of

the preceding expression
• ?: Means that there must be 0 or 1 occurrences of the

preceding expression
• {m}: Means that there must be m instances of the

preceding expression
• {m,n}: Means that there must be between m and n

instances of the preceding expression
• (abc): Means that the operation should be applied to

the specified sequence
• \: Used to escape special characters so that the

regular expression searches for their literal form

11

Regular Expressions: Special
Characters

Pattern Matches Example
donuts* “donut” or “donuts” or “donutss” or

“donutsss”….
This morning I had many donuts.

.onut Any character followed by “onut” Can I have a coconut donut?

donuts+ “donuts” or “donutss” or “donutsss”…. Do you want one donut or two donuts?

donuts? “donut” or “donuts” Do you want one donut or two donuts?

donuts{1} “donuts” Do you want one donut or two donuts?

donuts{0,1} “donut” or “donuts” Do you want one donut or two donuts?

.o(nut)? Any character followed by “o” or “onut” Can I have a disco donut?

donut\. “donut.” Please give me one donut.

Natalie Parde - UIC CS 421 12

Regular Expressions: Anchors

• Indicate that a pattern should be matched only at the beginning
or end of a word

Natalie Parde - UIC CS 421

Pattern Matches Example
^Donuts “Donuts” only when it is at the beginning of a string Donuts are an excellent way to

start the day.
donuts$ “donuts” only when it is at the end of the string I just ate 5 donuts

13

Shorthand
Character Classes
• Many programming languages support several

predefined, shorthand character classes for regular
expressions:

• \d: Any digit
• \D: Any non-digit
• \s: Any whitespace
• \S: Any non-whitespace
• \w: Any alphanumeric character
• \W: Any non-alphanumeric character
• \b: Empty string or certain characters at word

boundaries
• Can be very helpful, but make sure to understand

what patterns they’re matching before using them
• May be defined differently from what you need!

Natalie Parde - UIC CS 421 14

More about
shorthand
character
classes….
• Can be used inside or outside

disjunctions
• Can be negated
• Note that different

programming languages may
vary in which shorthand
character classes they offer,
and how they implement them

Natalie Parde - UIC CS 421 15

Regular expressions are often trickier
than they initially seem….

the Fails on: The

[tT]he Fails on: other

^[tT]he$ Fails on: Grab the donut!

16

Create a regular expression to find the set of strings containing the word the.

Errors

• When we match strings that we didn’t
want to match, we have false positive
(Type I) errors

• When we don’t match strings that we
wanted to match, we have false
negative (Type II) errors

Natalie Parde - UIC CS 421 17

Errors

• This is a recurring theme in NLP!
• Regardless of what application we’re

developing, we often try to do two things to
improve performance:

• Increase accuracy or precision
(minimizing false positives)

• Increase coverage or recall
(minimizing false negatives)

Natalie Parde - UIC CS 421 18

Regular
Expressions:
Takeaway Points

• Regular expressions are powerful
and have many different uses

• Text tokenization
• Text normalization
• Feature extraction

• They allow us to search for specific
strings of text using disjunctions,
negations, and special characters

Natalie Parde - UIC CS 421 19

This
Week’s
Topics

Natalie Parde - UIC CS 421 20

Tuesday

Regular expressions
Finite state automata

Thursday

Finite state transducers
Additional ways to
preprocess text
Edit distance

Regular expressions
can be matched using
finite state automata.

What are
finite state
automata?

• Computational models of states and
the transitions between them

• Can be used to model regular
expressions, but are also used in other
applications that function by
transitioning between finite states

• Dialogue systems
• Morphological parsing

• Terminology:
• Singular: Finite State Automaton (FSA)
• Plural: Finite State Automata (FSAs)

Natalie Parde - UIC CS 421 22

Key
Components

• Finite set of states
• Start state
• Final state

• Set of transitions from one state to another

Natalie Parde - UIC CS 421 23

How do FSAs work?
• For a given sequence of items (e.g., characters or words) that you hope to

match, begin in the start state
• If the next item in the sequence can be matched by transitioning to

another state from the current state, make that transition
• Repeat

• If no transitions are possible, stop
• If the state you stopped in is a final state, accept the sequence

Natalie Parde - UIC CS 421 24

FSAs are often represented
graphically.
• Nodes = states
• Arcs = transitions

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

25

What do we
know about
this FSA?

• Five states
• q0 is the start state
• q4 is the final (accept) state

• Five transitions
• Alphabet = {a, b, !}

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

26

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

27

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
28

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
29

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
30

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
31

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
32

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
33

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baa!
34

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
35

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
36

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
37

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
38

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
39

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
40

Regex that this FSA matches: baa+!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

Test String: baabaa!
41

Note: More than one FSA can
correspond to the same test string
in a regular language!

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

Test String:
baaa!

Test String:
baaa!

42

Formal
Definition

• A finite state automaton can be specified
by enumerating the following properties:

• The set of states, Q
• A finite alphabet, Σ
• A start state, q0
• A set of accept/final states, F⊆Q
• A transition function or transition

matrix between states, δ(q,i)
• δ(q,i): Given a state q∈Q and input i∈Σ,

δ(q,i) returns a new state q’∈Q.

43

Example: FSA for Dollar Amounts

Natalie Parde - UIC CS 421

q0 q1 q2 q4 q5 q6 q7

q3

One
Two
Three
Four
Five

Six
Seven
Eight
Nine

Ten
Twenty
Thirty
Forty
Fifty

Sixty
Seventy
Eighty
Ninety

Eleven
Twelve
Thirteen
Fourteen
Fifteen

Sixteen
Seventeen
Eighteen
Nineteen

Twenty
Thirty
Forty
Fifty

Sixty
Seventy
Eighty
Ninety

One
Two
Three
Four
Five

Six
Seven
Eight
Nine

cents

dollars

One
Two
Three
Four
Five

Six
Seven
Eight
Nine

Ten
Twenty
Thirty
Forty
Fifty

Sixty
Seventy
Eighty
Ninety

Eleven
Twelve
Thirteen
Fourteen
Fifteen

Sixteen
Seventeen
Eighteen
Nineteen

Twenty
Thirty
Forty
Fifty

Sixty
Seventy
Eighty
Ninety

One
Two
Three
Four
Five

Six
Seven
Eight
Nine

cents

Accept States
44

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>
q0

q1

q2

q3

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

q0 q1 q2 q3 q4

b a a

a

!

45

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>
q0 q1

q1

q2

q3

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

46

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>
q0 q1 L L L

q1

q2

q3

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

47

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>
q0 q1 L L L

q1 L q2

q2

q3

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

48

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>
q0 q1 L L L

q1 L q2 L L

q2 L q3

q3

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

49

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>
q0 q1 L L L

q1 L q2 L L

q2 L q3 L L

q3 L q3

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

50

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>
q0 q1 L L L

q1 L q2 L L

q2 L q3 L L

q3 L q3 q4

q4C
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Go to State

q0 q1 q2 q3 q4

b a a

a

!

51

State transitions in FSAs can be
represented using tables.

Natalie Parde - UIC CS 421

b a ! <end>
q0 q1 L L L

q1 L q2 L L

q2 L q3 L L

q3 L q3 q4 L

q4 L L L JC
ur

re
nt

ly
 in

 S
ta

te

Next Item in Sequence

Accept!

q0 q1 q2 q3 q4

b a a

a

!

52

State
transition
tables
simplify the
process of
determining
whether
your input
will be
accepted by
the FSA.

Natalie Parde - UIC CS 421 53

• For a given sequence of items to match,
begin in the start state with the first
item in the sequence

• Consult the table …is a transition to
any other state permissible with the
current item?

• If so, move to the state indicated by
the table

• If you make it to the end of your
sequence and to a final state, accept

Algorithmically, this looks like:
index ← beginning of sequence
current_state ← initial state of FSA
loop:
 if end of sequence has been reached:
 if current_state is an accept state:
 return accept
 else:
 return reject
 else if transition_table[current_state, sequence[index]] is empty:
 return reject
 else:
 current_state ← transition_table[current_state, sequence[index]]
 index ← index + 1
end

Natalie Parde - UIC CS 421 54

Deterministic vs. Non-Deterministic
FSAs

Natalie Parde - UIC CS 421 55

Deterministic FSA: At
each point in processing
a sequence, there is one
valid transition that can
be made (no choices!)

Non-Deterministic
FSA: At one or more
points in processing a
sequence, there are
multiple permissible
transitions (choices!)

Deterministic or Non-Deterministic?

Natalie Parde - UIC CS 421

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

56

Deterministic or Non-Deterministic?

Natalie Parde - UIC CS 421

If input is a, do this

If input is !, do this
Deterministic! q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

57

Deterministic or Non-Deterministic?

Natalie Parde - UIC CS 421

If input is a, do this

If input is !, do this
Deterministic!

If input is a, do ?Non-Deterministic!

q0 q1 q2 q3 q4

b a a

a

!

q0 q1 q2 q3 q4

b a a

a

!

58

Every non-
deterministic
FSA can be
converted to a
deterministic
FSA.

• Both are equally powerful
• Deterministic FSAs can accept as many

languages as non-deterministic ones

59

Non-
Deterministic
FSAs: How to
check for
input
acceptance?

60

Non-
Deterministic
FSA Search
Assumptions

Natalie Parde - UIC CS 421 61

There is at least one path through
the FSA for inputs that are
members of the language defined
by the FSA

Not all paths through the FSA for
an “accept” input lead to an accept
state

No paths through the FSA lead to
an accept state for inputs that are
not valid members of the language

Non-
Deterministic
FSA Search

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• States in the search space are
pairings of sequence indices and
states in the FSA

• By keeping track of which states have
and have not been explored, we can
systematically explore all the paths
through an FSA given an input

62

Non-
Deterministic

FSA Search
Assumptions

• Success: Path is found for a given input
that ends in an accept

• Failure: All possible paths for a given input
lead to failure

63

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

64

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

65

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

66

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

67

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

68

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

69

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

70

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

71

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

72

Example: Non-Deterministic FSA
Search

Natalie Parde - UIC CS 421

Test Input: baaa!

q0 q1 q2 q3 q4

b a a

a

!

73

Additional Characteristics of FSAs

• You can apply set operations to any FSA
• Union
• Intersection
• Concatenation
• Negation

• For non-deterministic FSAs, first convert to a deterministic FSA
• To do so, you may need to utilize an ϵ transition

• ϵ transition: Move from one state to another without consuming an item
from the input sequence

Natalie Parde - UIC CS 421 74

Summary:
Regular
Expressions
and Finite
State
Automata

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

 4
21

• Regular expressions allow us to capture
patterns defined by regular languages

• Complex regular expressions may be
most effectively implemented using
disjunction, negation, or other special
characters

• FSAs are computational models that
describe regular languages

• To determine whether an input item is a
member of an FSA’s language, you can
process it sequentially from the start to
(hopefully) the final state

• State transitions in FSAs can be
represented using tables

• FSAs can be either deterministic or non-
deterministic

75

This
Week’s
Topics

Natalie Parde - UIC CS 421 76

Tuesday

Regular expressions
Finite state automata

Thursday

Finite state transducers
Additional ways to
preprocess text
Edit distance

FSAs allow
us to model
regular
languages,
but they don’t
allow us to
define
mappings
between sets
of items.

• How can we extend this model to
accommodate those mappings?

• Finite state transducers

Natalie Parde - UIC CS 421 77

Finite State
Transducers

Natalie Parde - UIC CS 421

Finite State Transducer (FST): A special
type of FSA that describes mappings
between two sets of items

Each transition is defined by an (input,
output) pair

FSAs can be converted to FSTs by
labeling each arc with input and output
items (e.g., a:b for an input of a and an
output of b)

78

Example: Simple FST

Start Final

Natalie Parde - UIC CS 421

q0 q1

b:aaa:b b:ϵ

b:b

a:ba

79

Formal
Definition

• A finite state transducer can be specified by
enumerating the following properties:

• The set of states, Q
• A finite input alphabet, Σ
• A finite output alphabet, Δ
• A start state, q0
• A set of accept/final states, F⊆Q
• A transition function or transition matrix

between states, δ(q,i)
• An output function giving the set of

possible outputs for each state and input,
σ(q,i)

• δ(q,i): Given a state q∈Q and input i∈Σ,
δ(q,i) returns a new state q’∈Q.

Natalie Parde - UIC CS 421 80

Formal
Properties

• FSTs are compositional:
• Letting T1 be an FST from I1 to O1, and
• Letting T2 be an FST from I2 to O2,
• The two FSTs can be composed such that

the resulting FST maps directly from I1 to
O2

• FSTs can be inverted:
• Letting T be an FST that maps from I to O,

its inversion (T-1) will map from O to I.

Natalie Parde - UIC CS 421 81

q0

a:b

q1

a:b

∘ q0

b:c

q1

b:c

= q0

a:c

q1

a:c

Deterministic vs. Non-
Deterministic FSTs

N
atalie Parde - U

IC
 C

S 421

Just like FSAs, FSTs can
be non-deterministic

…one input can be
translated to many possible

outputs!

Unlike FSAs, not all non-
deterministic FSTs can be

converted to
deterministic FSTs

FSTs with underlying
deterministic FSAs (at any

state, a given input maps to
at most one transition out of

the state) are called
sequential transducers

82

Examples: Non-Deterministic and
Sequential (Deterministic) Transducers

q0 q1

b:aaa:b b:ϵ

b:b

a:ba

Non-Deterministic

q0 q1

a:b b:ϵ

b:b

a:ba
Sequential

Natalie Parde - UIC CS 421 83

When
can we
use FSTs
in NLP?

• Case example: Morphological parsing
• The task of recognizing the component

morphemes of words (e.g., foxes → fox +
es) and building structured representations
of those components

• Morphemes:
• Small meaningful units that make up words
• Stems: The core meaning-bearing units
• Affixes: Bits and pieces that adhere to

stems and add information
• -ed
• -ing
• -s

Natalie Parde - UIC CS 421 84

Example Morphological Lexicon

q0 q1

q2

q3

irreg-past-verb-form

reg-verb-stem

past participle (-ed)

past (-ed)

reg-verb-stemirreg-verb-stem

present participle (-ing)

3sg (-s)

Natalie Parde - UIC CS 421 85

Why is morphological parsing
necessary?

• Useful for breaking language into more easily interpretable parts
• Morphemes can be productive

• Example: -ing attaches to almost every verb, including brand new words
• “Why are you Instagramming that?”

• Some languages are very morphologically complex
• Uygarlastiramadiklarimizdanmissinizcasina

• Uygar “civilized” + las “become”
• + tir “cause” + ama “not able”
• + dik “past” + lar “plural”
• + imiz “p1pl” + dan “abl”
• + mis “past” + siniz “2pl” + casina “as if”

Natalie Parde - UIC CS 421 86

Finite State
Morphological
Parsing

cats cat +N +PL

Goal: Take input surface realizations and produce
morphological parses as output

Natalie Parde - UIC CS 421

Surface Text Morphological Parse
cats cat +N +PL

cat cat +N +SG

cities city +N +PL

geese goose +N +PL

goose goose +N +SG

merging merge +V +PresPart

caught catch +V +Past

87

Finite State Morphological
Parsing
reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat

q0

q1reg-noun

q2

q3

q4

q5

q6

q7

irreg-sg-noun

irreg-pl-noun

ϵ:+N

ϵ:+N

ϵ:+N

e?s$:+PL

$:+SG

$:+SG

$:+PL

Natalie Parde - UIC CS 421 88

Finite State Morphological
Parsing

f:f
o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N
e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat

Natalie Parde - UIC CS 421

foxes 🦊

89

Finite State Morphological
Parsing

f:f
o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N
e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat

Natalie Parde - UIC CS 421

foxes 🦊 f

90

Finite State Morphological
Parsing

f:f
o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N
e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat

Natalie Parde - UIC CS 421

foxes 🦊 fo

91

Finite State Morphological
Parsing

f:f
o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N
e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat

Natalie Parde - UIC CS 421

foxes 🦊 fox

92

Finite State Morphological
Parsing

f:f
o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N
e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat

Natalie Parde - UIC CS 421

foxes 🦊 fox +N

93

Finite State Morphological
Parsing

f:f
o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N
e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat

Natalie Parde - UIC CS 421

foxes 🦊 fox +N

94

Finite State Morphological
Parsing

f:f
o:o x:x

c:c a:a t:t

g:g o:o

e:o

o:o s:s

e:o s:s

e:e

e:e

ϵ:+N
e?s$:+PL

$:+SG

ϵ:+N

ϵ:+N

$:+SG

$:+PL

reg-noun irreg-pl-noun irreg-sg-noun
fox g o:e o:e s e goose
cat

Natalie Parde - UIC CS 421

foxes 🦊 fox +N +PL

95

Key
Takeaways:
Finite State

Transducers

N
atalie Parde - U

IC
 C

S 421

• FSTs are FSAs that describe
mappings between two sets

• All non-deterministic FSAs can be
converted to deterministic versions,
but all non-deterministic FSTs cannot

• FSTs with underlying deterministic
FSAs are called sequential
transducers

• FSTs are particularly useful for
morphological parsing

96

This
Week’s
Topics

Natalie Parde - UIC CS 421 97

Tuesday

Regular expressions
Finite state automata

Thursday

Finite state transducers
Additional ways to
preprocess text
Edit distance

What are some other
ways that we can
preprocess text?
• Text tokenization is an important first step

for most NLP tasks
• Often implemented using regular expressions

• Typical NLP pipeline:
• Segmenting sentences (if applicable)
• Tokenizing words
• Normalizing word formats (e.g.,

favourite → favorite)

Natalie Parde - UIC CS 421 98

Sentence Segmentation and Text
Tokenization

Alice looked all round the table, but there was nothing on it but tea. “I don't see any wine," she remarked.

Natalie Parde - UIC CS 421 99

Tokens

Sentence Segments

How many words in a
string of text?

• I do uh main- mainly business data processing
• Fragments, filled pauses

• Seuss’s cat in the hat is different from other
cats!

• Lemma: Words with the same stem,
coarse-grained part of speech, and
general word sense

• cat and cats = same lemma
• Wordform: The full inflected surface form

of a word
• cat and cats = different wordforms

Natalie Parde - UIC CS 421 100

Types vs. Tokens

Alice looked all round the table, but there was nothing
on it but tea.

• Type: an element of the vocabulary.
• Token: an instance of that type in running text.
• How many?

• 14 tokens (or 16 if punctuation is tokenized
separately)

• 13 types (or 15 if punctuation is tokenized
separately)

Natalie Parde - UIC CS 421101

Type and Token Counts
in Popular Datasets

N = number of tokens
V = vocabulary = set of types

|V| is the size of the vocabulary

Natalie Parde - UIC CS 421 102

Dataset Tokens =
N

Types =
|V|

Switchboard phone
conversations

2.4 million 20K

Shakespeare 884K 31K

Google N-grams 1 trillion 13 million

Tokenization requires many
individual decisions!

• Finland’s capital ® Finland ’s or Finland’s ?
• isn’t ® is not or isn ’t or is n’t ?
• Hewlett-Packard ® Hewlett Packard or Hewlett-Packard or

 Hewlett- Packard or Hewlett -Packard ?
• San Francisco ® one token or two?
• a.m., Ph.D. ® ??

Natalie Parde - UIC CS 421 103

Some of these decisions are
language-specific:

• L'ensemble ® one token or two?
• L ? L’ ? Le ?
• Want l’ensemble to match with un ensemble

Contractions

• Lebensversicherungsgesellschaftsangestellter
• life insurance company employee

• 莎拉波娃现在居住在美国东南部的佛罗里达。
• Sharapova now lives in Florida in the southeastern United States.

Tokens Not Delineated by Whitespace

Natalie Parde - UIC CS 421 104

Text Normalization
• Normalization: Manipulating text such that all forms of the same word match

(e.g., U.S.A. = USA, flavour = flavor, etc.)
• To normalize text, you must define equivalence classes

• Example: “.” characters in a term → not important
• Words with the same characters but different capitalization are often considered

equivalent to one another (case folding)
• Example: Hello = hello
• Not a perfect strategy!

• US != us
• Useful equivalence classes vary depending on task

• Capitalization can be very important in sentiment analysis

Natalie Parde - UIC CS 421 105

Lemmatization

• Reduce inflections or variant forms to base
form

• am, are, is ® be

• car, cars, car's, cars' ® car

• the boy's cars are different colors ® the
boy car be differ color

• Tricky because you need to find the correct
dictionary headword form

Natalie Parde - UIC CS 421 106

Stemming

• Automatically reduces words to their stems
using simple rules

• language dependent
• Example: {automate(s), automatic,

automation} → automat
• Pros: Very quick, simple to implement
• Cons: Groups together some words that don’t

really mean the same thing, and doesn’t
group together some words that do mean the
same thing

• {meanness, meaning} → mean
• {goose} → goos, {geese} → gees

Natalie Parde - UIC CS 421 107

Porter Stemming

• Step 1a
• sses ® ss caresses ® caress
• ies ® i ponies ® poni
• ss ® ss caress ® caress
• s ® ø cats ® cat

• Step 1b
• (*v*)ing ® ø walking ® walk
• sing ® sing
• (*v*)ed ® ø plastered ® plaster
• …

• Step 2 (for long stems)
• ational® ate relational® relate
• izer® ize digitizer ® digitize
• ator® ate operator ® operate
• …

• Step 3 (for longer stems)
• al ® ø revival ® reviv
• able ® ø adjustable ® adjust
• ate ® ø activate ® activ
• …

Natalie Parde - UIC CS 421 108

Much like tokenization, stemming
methods generally need to be
customized for specific languages!

Sentence
Segmentation
• !, ? are relatively unambiguous
• . is more ambiguous

• Sentence boundary
• Abbreviations like Inc. or Dr.
• Numbers like .02% or 4.3

Natalie Parde - UIC CS 421 109

This
Week’s
Topics

Natalie Parde - UIC CS 421 110

Tuesday

Regular expressions
Finite state automata

Thursday

Finite state transducers
Additional ways to
preprocess text
Edit distance

We know how to preprocess
strings now …but how can we

find the distance between
them?

Popular string (or other sequence) comparison technique:
• Minimum edit distance

Natalie Parde - UIC CS 421 111

Edit
Distance
• Simple way to answer

the question: How
similar are two strings?

• Note: This distance is
not necessarily
associated with
semantic distance

plant

chant

112

Other Uses of Edit Distance in
NLP

• Evaluating machine translation and speech recognition using word error rate
 Spokesman confirms senior government adviser was shot

 Spokesman said the senior adviser was shot dead

 S I D I

Natalie Parde - UIC CS 421 113

Minimum
Edit
Distance
• Minimum number of editing

operations needed to
transform one string into
another

• Possible editing operations:
• Insertion
• Deletion
• Substitution

114

Minimum Edit
Distance

• Assuming we have the two
aligned strings on the right:

• If each operation has a cost
of 1 (Levenshtein distance)

• Distance between these is 5
• If substitutions cost 2

(alternative also proposed by
Levenshtein)

• Distance between them is 8

I N T E * N T I O N

* E X E C U T I O N
d s s i s

Natalie Parde - UIC CS 421 115

How to find the
minimum edit distance?

Natalie Parde - UIC CS 421

• Search for a path
(sequence of edits) from
the start string to the final
string:

• Initial state: the word
we’re transforming

• Operators: insert,
delete, substitute

• Goal state: the word
we’re trying to get to

• Path cost: what we
want to minimize (the
number of edits)

116

However,
the search
space of
all edit
sequences
is huge!

117

Formal
Definition:
Minimum
Edit
Distance

• For two strings
• X of length n
• Y of length m

• We define D(i,j) as the edit distance
between X[1..i] and Y[1..j]

• X[1..i] = the first i characters of X
• The edit distance between X and Y is

thus D(n,m)

118

Intuition:
Dynamic
Programming

• Minimum edit distance can be solved
using dynamic programming

• Stores intermediate outputs in a
table

• Intuition: If some string B is in the
optimal path from string A to string
C, then that path must also include
the optimal path from A to B

• D(n,m) is computed tabularly,
combining solutions to subproblems

• Bottom-up
• We compute D(i,j) for small i,j
• And compute larger D(i,j) based on

previously computed smaller
values

• i.e., compute D(i,j) for all i (0 <
i < n) and j (0 < j < m)

Natalie Parde - UIC CS 421 119

Algorithmically, this looks like:
• Initialization

D(i,0) = costins * i
D(0,j) = costdel * j

• Algorithm:
For each i = 1…n
 For each j = 1…m
 D(i-1,j) + costins
 D(i,j)= min D(i,j-1) + costdel
 D(i-1,j-1) + costsub; if X(i) ≠ Y(j)
 0; if X(i) = Y(j)

• Termination:
D(N,M) is distance

Natalie Parde - UIC CS 421
120

N
O
I

T
N
E
T
N
I
#

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421 121

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421 122

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
123

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1 2
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
124

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
125

N 9
O 8
I 7

T 6
N 5
E 4
T 3
N 2
I 1 2 3 4 5 6 7 6
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
126

N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
127

Backtrace for Computing
Alignments

• We know the minimum edit distance now …but what is the alignment
between the two strings?

• We can figure this out by maintaining a backtrace
• For each new cell, remember where we came from!

• D(i-1,j) ?
• D(i,j-1) ?
• D(i-1,j-1) ?

• Once we reach the end of the table (upper right corner), we can trace
backward using these pointers to figure out the alignment

Natalie Parde - UIC CS 421 128

N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10
T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
129

N 9 8 9 10 11 12 11 10 9 8
O 8 7 8 9 10 11 10 9 8 9
I 7 6 7 8 9 10 9 8 9 10
T 6 5 6 7 8 9 8 9 10 11
N 5 4 5 6 7 8 9 10 11 10
E 4 3 4 5 6 7 8 9 10 9
T 3 4 5 6 7 8 7 8 9 8
N 2 3 4 5 6 7 8 7 8 7
I 1 2 3 4 5 6 7 6 7 8
0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

The Edit Distance Table

Natalie Parde - UIC CS 421
130

Algorithmically, this looks like:
• Base conditions: Termination:

D(i,0) = costins * i D(0,j) = costdel * j D(N,M) is distance

• Algorithm:
For each i = 1…n
 For each j = 1…m

 D(i-1,j) + costins
 D(i,j)= min D(i,j-1) + costdel
 D(i-1,j-1) + costsub; if X(i) ≠ Y(j)
 0; if X(i) = Y(j)
 LEFT (INSERT)
 ptr(i,j)= DOWN (DELETE)
 DIAG (SUBSTITUTE)

Natalie Parde - UIC CS 421 131

Summary

